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Growth and development: Hereditary and
mechanical modulations
Jeremy J. Mao, DDS, MSD, PhD,a and Hyun-Duck Nah, DMD, MSD, PhDb

Chicago, Ill, and Philadelphia, Pa

Growth and development is the net result of environmental modulation of genetic inheritance. Mesenchymal
cells differentiate into chondrogenic, osteogenic, and fibrogenic cells: the first 2 are chiefly responsible for
endochondral ossification, and the last 2 for sutural growth. Cells are influenced by genes and environmental
cues to migrate, proliferate, differentiate, and synthesize extracellular matrix in specific directions and
magnitudes, ultimately resulting in macroscopic shapes such as the nose and the chin. Mechanical forces,
the most studied environmental cues, readily modulate bone and cartilage growth. Recent experimental
evidence demonstrates that cyclic forces evoke greater anabolic responses of not only craniofacial sutures,
but also cranial base cartilage. Mechanical forces are transmitted as tissue-borne and cell-borne mechanical
strain that in turn regulates gene expression, cell proliferation, differentiation, maturation, and matrix
synthesis, the totality of which is growth and development. Thus, hereditary and mechanical modulations of
growth and development share a common pathway via genes. Combined approaches using genetics,
bioengineering, and quantitative biology are expected to bring new insight into growth and development, and
might lead to innovative therapies for craniofacial skeletal dysplasia including malocclusion, dentofacial
deformities, and craniofacial anomalies such as cleft palate and craniosynostosis, as well as disorders
associated with the temporomandibular joint. (Am J Orthod Dentofacial Orthop 2004;125:676-89)
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Growth and development is of tremendous
terest to scientists, clinicians, and even
general public. Parents wonder whom th

child resembles—the layperson’s perception of cra
facial growth. For those who suffer from malocc
sions, dentofacial deformities, and craniofacial ano
lies such as cleft palate and craniosynostosis, the
to fully understand craniofacial growth is more tha
scientific curiosity. In the past decade, there has be
increasingly rapid gain in the knowledge about pren
and postnatal craniofacial growth by means of 2 gen
approaches. The first is observational studies at d
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ent levels, such as observing series of cephalom
films, microscopic sections of tissues, and the beha
of cells, extracellular matrix molecules, and genes.
second is manipulational studies such as modif
tissue growth by mechanical forces, chemical ag
recombinant tissue techniques, and the use of t
genic animal models. There is a benign lack of aw
ness of advances among related fields. For instance
findings in craniofacial genetics might not be known
craniofacial orthopedics including orthodontics,
vice versa. Also lacking is a comprehensive synth
of the necessary linkage between macroscopic gr
and genes, matrix molecules, and cells that accoun
craniofacial growth.

Most craniofacial anomalies and dentofacial de
mities result from inherited mutations and aber
environmental modulation of multiple genes. Mech
ical forces are the most studied environmental cues
readily modulate bone and cartilage growth.1-3 Curren
mechanotherapies for mandibular hypoplasia are
evidence of certain levels of clinical usefulness and
need for greater therapeutic effectiveness to stim
mandibular growth.4-6 Conversely, mechanotherap
for mandibular hyperplasia are aimed at restrai
mandibular growth.7-10 As discussed below, curre
mechanotherapies can most likely be improved w
we understand more effective ways to communi
with bone and cartilage cells.

This review was designed to accomplish 3 g
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related to hereditary and mechanical modulations of
postnatal growth and development: (1) to clarify sev-
eral key definitions and concepts that are the foundation
for comprehensive understanding growth and develop-
ment, (2) to synthesize current knowledge of bone and
cartilage growth of the craniofacial skeletal lineage,
and (3) to explore effective means of mechanical
stresses to communicate with bone and cartilage cells.

Growth and development are progressive changes
over time. Growth is defined as increases in number
and size.11-14 Development refers to a stage of growth
and maturation encompassing morphogenesis, differen-
tiation, and acquisition of functionality. As illustrated
in Table I, growth and development so defined apply to
different levels of biological organization, ie, genes,
matrix molecules, and cells, as well as clinically visible
changes in tissues, organs, and organisms.

Growth at the cellular and subcellular levels de-
notes net increases in the number or size of cells and in
the mass of the extracellular matrix. At the macroscopic
or clinical level, growth is exemplified by an increasing
number of erupted teeth and the increasing size of the
mandibular condyle. Growth in multicellular organisms
is more frequently allometric (disproportional among
adjacent structures) than isometric (proportional among
structures).

Development at the cellular level can be described
as differentiation and maturation of cell phenotypes
from progenitor cells to terminally differentiated cells,
such as from mesenchymal cells to mature osteoblasts
or from proliferating chondrocytes to hypertrophic
cells. Development can be exemplified at the subcellu-
lar level by self-assembly of immature collagen fibrils
into mature and functional collagen fibers in the extra-
cellular matrix or mineralization of the osteoid to form
mature bone. At the clinical level, the increasing
capacity of the maturing mandibular condyle to with-
stand mechanical stresses can be viewed as develop-
ment.

Table I. Postnatal growth and development defined at v
visible growth; mandibular growth (eg, increases in m
cellular, molecular, and genetic levels

Growth (number and

Clinical Increase in mandibular length
Extracellular matrix Increase in procollagen production and s

increase in amount of collagen molecu
matrix

Cellular Increases in number of osteoblasts

Genetic Gene regulation of osteoblast proliferatio
Force is mass � acceleration. Counterintuitively,
force is not a measurable property. One can only
measure the effects of force such as strain, defined as
changes in a structure’s length over its original length.
The definition of strain can only be satisfied by a
change in the structure’s length, which is inducible only
repeatedly by a change in force magnitude, instead of a
constant force. Multiple cycles of change in force
magnitude are significant in that bone and cartilage
cells respond more readily to rapid oscillation in force
magnitude than to a constant force.2,15-22 A force
propagating through biological tissue is transduced as
tissue-borne and cell-borne mechanical stresses, which
in turn induce interstitial fluid flow.23,24 Although fluid
flow is a current focus of the mechanotransduction
pathways, its anabolic effects appear to rely on evoking
deformation of extracellular matrix molecules, trans-
membrane channels, cytoskeleton, and intranuclear
structures, which by definition is strain.2,25-27 Like
force, stress is not measurable, but can be deduced from
strain. Thus, mechanical strain becomes the common
thread of all mechanical forces acting on tissues, cells,
and genes.2 Exogenous forces are transmitted in bio-
logical tissues as strain before cellular and genetic
responses are elicited via a series of general mechano-
transduction events as shown in Figure 1. An exoge-
nous force must possess certain characteristics be-
fore it qualifies as a mechanical stimulus, defined as
a mechanical signal capable of eliciting anabolic or
catabolic growth response. All characteristics of
mechanical signals, including magnitude and dura-
tion, have been examined in experiments and clinical
practice of craniofacial orthopedics with the sole
exception of force frequency.2 Cyclic forces with
sinusoidal waveforms induce accelerated growth of
not only craniofacial sutures,22,28 but also chondro-
genesis of the cranial-base cartilage (the spheno-
occipital synchondroses).20,21

Hereditary and mechanical modulations of growth

s levels of understanding from genes to clinically
lar length and height) results from changes at

Development (proliferation, apoptosis,
differentiation, and maturation)

Change in the shape of mandibular condyle
by osteoblasts;

xtracellular
Formation of mineralization-competent

matrix

Differentiation of osteoprogenitor cells into
osteoblasts

Activation of differentiation marker genes
ariou
andibu

size)

ecretion
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and development share a common pathway via genes.
As shown in Table II, genes involved in regulating
bone and cartilage development can be divided into
those encoding bone-matrix and cartilage-matrix pro-
teins (generally considered marker genes) and those
regulating cellular or other gene activities (regulatory
genes). Regulatory genes include transcription factors
and genes encoding growth factors/growth factor recep-
tors. Transcription factors bind to regulatory DNA
sequences and modulate the expression of target genes.
Growth factors typically reside in the extracellular
milieu and send mitogenic and differentiation signals to
target cells via receptors on cell membrane. Mechanical
forces are the most studied environmental cues and
readily modulate bone and cartilage growth. Whereas
genes obviously carry hereditary material, mechanical
stimuli typically upregulate or downregulate genes
before their elicited anabolic or catabolic responses are
translated into macroscopic growth, such as an increase
of mandibular length by 6 mm. Cells and matrix
molecules in micrometer scale must ultimately add up

Fig 1. Mechanotransduction pathways describ
in macroscopic shape such as shape of man
reviews.2,23,24,27 A: Force can be induced on b
exogenous sources such as headgear or fixed
or cyclic (2). B: Tissue strain and cell defor
exogenous forces, leading to deformation o
regulated via mechanotransduction pathways.
cell dividing into 2 daughter cells), differentiate
growth and development, macroscopically visi
to adult.
to 6 mm. For instance, 120 osteoblasts lined up sequen-
tially, with each producing 50 �m of collagen matrix,
would lead to 6000 �m (� 6 mm) of osteoid. Subse-
quent mineralization of this collagen matrix would
equate to 6 mm of bone. The key, therefore, is how to
recruit 120 osteoblasts and line them up in sequence
(120 osteogenic cell layers in reality). To date, our
understanding of mechanical activation of bone and
cartilage cells is incomplete.

CARTILAGE GROWTH: HEREDITARY AND
MECHANICAL MODULATIONS

The embryonic cranial base consists of primary
cartilage, which is progressively replaced by bone.
After birth, residual cartilaginous structures, known as
synchondroses, persist between occipital and sphenoid
bone as well as spheoid bone and ethmoid bones,
serving as growth cartilage (Fig 2, A). Therefore,
cartilage growth significantly contributes to overall
growth of the embryonic cranial base and postnatal
lengthening of the cranial base, as evidenced by mid-

w exogenous forces induce ultimate changes
Supporting evidence can be found in recent
al tissues from either muscular contraction or
ontic appliances. Force can be either static (1)
n result from application of endogenous or
membrane and cytoskeleton. C: Genes are
ne and cartilage cells proliferate (shown as 1

produce extracellular matrix molecules; that is
changes in shape of mandible from newborn
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face deficiency in various forms of chondrodysplasia.29

The mandibular condylar cartilage is secondary carti-
lage (Fig 2, B),30,31 but its significance in the contribu-
tion to mandibular growth has been a subject of
considerable controversy.

Genes involved in the regulation of cartilage
growth

Cells in growth cartilage undergo a temporal and
spatial sequence of proliferation, apoptosis, differenti-
ation, and hypertrophy (Fig 2). Hypertrophic chondro-
cytes are then gradually replaced by osteoblasts along
with angiogenesis32 in a process known as endochon-

Table II. Classes of selective genes involved in growth

Genes

Cartilage
Marker genes Type II collagen

IIA isoform
IIB isoform

Type IX collagen
Type X collagen
Aggrecan

Regulatory genes
Transcription factor 5

Sox 9
Growth factor/receptors

Indian hedgehog (Ihh)
Fibroblast growth factors/receptors (F
Transforming growth factors/receptors

(TGFb/TGFbR)
Bone morphogenetic proteins/receptor
Parathyroid hormone related peptide/r

(PTHrP/PTHrPR)
Retinoic acid receptors (RAR)

Bone
Marker genes Alkaline phosphatase

Type I collagen
Bone sialoprotein
Osteopontin
Osteocalcin
Osteonectin

Regulatory genes
Transcription factors Cbfa1/Runx2

Osterix
Twist
Msx2

Growth factor/receptors Fibroblast growth factors/receptors (F

Transforming growth factors/receptors
(TGFb/TGFbR)

Bone morphogenic proteins/receptors

Insulin like growth factor (IGF)

Platelet derived growth factor (PDGF
dral ossification. Identification of various regulatory
molecules involved in cartilage growth, listed in Table
II, has been made more frequently from studies of the
appendicular skeleton than the craniofacial skeleton.
Briefly, parathyroid-hormone-related peptide (PTHrP)
stimulates chondrocyte proliferation but inhibits chon-
drocyte hypertrophy,33,34 as evidenced by dystrophic
growth plate cartilage resulting from decreased cell
proliferation and premature hypertrophy in PTHrP
knock-out (targeted disruption of the gene) mice.35,36

Indian hedgehog (Ihh) coordinates chondrocyte prolif-
eration and hypertrophy through communication with
PTHrP/parathyroid hormone receptor (PTH-R) signal-

evelopment of cartilage and bone

Functions

Marker for chondroprogenitor cells
Marker for differentiated chondrocytes
Interact with proteoglycans
Marker for hypertrophic chondrocytes
Cartilage-specific proteoglycan

Signals chondrocyte differentiation

Stimulates chondrocyte proliferation and PTHrP.
R) Inhibits chondrocyte proliferation and hypertrophy

Stimulates chondrocyte differentiation and hypertrophy

/BMPR) Stimulates chondrocyte hypertrophy
s Stimulates chondrocyte proliferation

Stimulates chondrocyte hypertrophy

Potential Ca2� carrier, hydrolyze inhibitors of mineral
deposition such as pyrophosphates

Serves as scaffold of mineralization
Nucleator of mineralization
Inhibits mineralization and promote bone resorption.
Inhibits mineralization
May mediate deposition of hydroxyapatite

Required for osteogenic commitment and differentiation
Required for osteogenic differentiation
Positive regulator of osteoblast differentiation
Inhibits osteoblast differentiation

R) Stimulates proliferation and differentiation. Generate
survival signaling

Modulates bone remodeling

MPR) Increases Cbfa1/Runx2 expression and stimulate
differentiation

Stimulates cell proliferation, differentiation and matrix
production

Signals cell proliferation and recruit progenitor cells by
stimulating chemotactic migration
and d

GF/FGF

s (BMP
eceptor

GF/FGF

(BMP/B

)
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ing pathways.37 In contrast to Ihh/PTHrP signaling
pathways, fibroblast growth factor (FGF)/fibroblast
growth factor receptor (FGFR) signaling inhibits chon-
drocyte proliferation.38-43 Transforming growth factor
beta (TGF�) induces chondrocyte differentiation from
progenitor cells but inhibits chondrocyte proliferation,
hypertrophy, and mineralization.44-46 Bone morphoge-
netic proteins (BMPs) induce not only chondrogenic
differentiation, but also hypertrophy and mineraliza-
tion.47-64 Both stimulatory and inhibitory pathways
regulate chondrocyte cellular activities with apparent
redundancy among various regulatory molecules, sug-
gesting that cartilage growth and development is a
complex process orchestrated by many genes. Some of
these cartilage genes are expected to be target genes of
mechanical stresses as discussed below.

Mechanical modulation of cranial base growth

Growth cartilage of the cranial base is generally
regarded as a “growth center” with its growth potential
predetermined by genes and with little influence from
environmental cues.65,66 After the occipital bone adja-
cent to the spheno-occipital synchondrosis was found to
experience mechanical strain upon simulated orthope-
dic forces,67,68 we hypothesized that mechanical stimuli
enhance the growth of the cranial base synchondrosis.
To test this hypothesis, separate groups of young

Fig 2. Schematic diagrams of typical cranial ba
cartilage components of mandibular condyle
growth plates with their reserve zones (RZ) me
zones (PZ), prehypertrophic zones (PHZ), and
differentiate from reserve cells toward hypertro
apoptosis followed by replacement by subchon
differentiation. B, Growing mandibular condyle
cartilage (GC). Articular cartilage of mandibular
under articular surface and other chondrocyte-
condyle consists of differentiating chondrocyt
HZ. Downward arrow indicates direction of ch
growing rabbits (litter mates) matched by age and sex
were treated with 0-newton (N) exogenous forces
(natural growth), 2-N static forces for 20 minutes per
day over 12 days, or 2-N cyclic forces for the same
duration. Upon harvest of the entire spheno-occipital
synchondrosis including the subchondral bone, com-
puterized histomorphometry was used to quantify the
geometry of the spheno-occipital synchondrosis and its
separate growth zones such as proliferating and hyper-
trophic zones. Bromodeoxyuridine (BrdU) was used to
label chondrocytes undergoing mitosis.

Cranial base cartilage treated with cyclic forces had
a significant increase in the overall length and area (Fig
3). By contrast, cranial base cartilage treated with static
forces of matching peak load and duration underwent
marginal increases in chondrogenesis over natural
chondral growth.20 Cell kinetics experiments showed
that BrdU-labeled chondrocytes treated with cyclic
forces had significant increases in the proliferating zone
of spheno-occipital synchondrosis samples treated with
cyclic forces in comparison with natural chondral
growth and those treated with static forces.21 These
data are remarkable for several reasons. First, mechan-
ical stimuli were applied for only about 1% of total
daily time over a total duration of 12 days. Thus, the
anabolic responses are most likely elicited by mechan-
ically activated cell proliferation, differentiation, and

nchondrosis (A), and both articular and growth
, Cranial base synchondrosis consists of 2

Arranged in bipolar directions are proliferating
rtrophic zones (HZ). Note that chondrocytes

chondrocytes in typical columns and undergo
one. Arrows indicate direction of chondrocyte

ists of both articular cartilage (AC) and growth
yle consists of fibroblast-like cells immediately
lls. Growth cartilage component of mandibular
t can be distinguished into RZ, PZ, PHZ, and
cyte differentiation.
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Fig 3. Chondrogenesis of rabbit cranial base cartilage is enhanced by cyclic mechanical forces.
Three waveforms at top indicate treatments of corresponding 3 histological specimens in same
columns. More chondrogenesis was evoked by cyclic forces (C and C�) than sham control (A and
A�) and static forces (B and B�). Sham control: no force application; static (middle): ramp force
followed by continuous force of constant magnitude; cyclic force (right): ramp force followed by
rapid oscillation in force magnitude. Histological characteristics of cranial-base growth cartilage in
sham control (A, A�), static (B, B�) and dynamic (C, C�) specimens stained with hematoxylin and
eosin (A, B, C) and safranin O/fast green (A�, B�, C�). Computer-assisted histomorphometry was
used to quantify geometry of chondrogenesis; scale bar: 500 �m. Used with permission of Wang

20
and Mao.
Fig 4. Suture growth is enhanced by cyclic mechanical forces. Representative photomicrographs
of geometric widths of both premaxillomaxillary suture (PMS) and nasofrontal suture (NFS) in rabbit.
A, sham control of PMS under normal growth; B, static loading of PMS; C, cyclic loading of PMS;
D, sham control of NFS under normal growth; E, static loading of NFS; F, cyclic loading of NFS. Blue
lines were manually drawn to indicate sutural edge between fibrous connective tissue of suture and
mineralized sutural bone. Blue circles were manually drawn to represent sutural geometry with
diameter of each circle equal to width of the suture in center of each standardized grid block (not
shown). Hematoxylin and eosin stain; scale bar, 100 �m. Used with permission of Kopher and
Mao.22
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associated matrix synthesis, instead of pure mechanical
stretch. Second, Frost’s chondral modeling theory
states that chondrogenesis should be upregulated by a
range of exogenous static forces.69 Here we demon-
strated that the oscillatory components of cyclic force,
instead of constant force magnitude, are more effective
for stimulating chondrogenesis.20,21 Third, little is
known about the mechanical modulation of genes in the
cranial base, although gene expression in the appendic-
ular growth plate upon mechanical stimulation has been
studied. Cartilage genes are upregulated by mechanical
stimuli to induce chondrocyte proliferation and differ-
entiation.15,70-72 For instance, the expression of Ihh is
upregulated by cyclic mechanical stresses applied to
embryonic chick sternum chondrocytes in 3-dimen-
sional culture.73 The remaining tasks are along several
fronts: to determine the optimal mechanical stimuli for
chondrogenesis and subchondral osteogenesis; to in-
vestigate mechanotransduction pathways, including
mechanosensitive genes, of chondrocytes in synchon-
drosis; and to quantify subepiphyseal osteogenesis to
determine the contribution of synchondroseal growth to
facial bones.

Contribution of condylar cartilage to mandibular
growth

In long bones that develop by endochondral ossifi-
cation, secondary ossification centers divide the carti-
laginous epiphysis into articular cartilage and growth
plate shortly before or after birth.74 Then, articular
cartilage and growth plate cartilage evolve differently
during postnatal development, especially in their re-
sponses to mechanical forces.69 After the pubertal
growth spurt, the appendicular growth plate is com-
pletely replaced by bone, whereas articular cartilage is
normally present for the rest of life (Fig 2, B). By
contrast, secondary ossification centers have not been
reported in the mandibular condyle. Thus, the mandib-
ular condyle in growing subjects consists of both
articular and growth components,30,31,75 which together
are called fibrocartilage because of the presence of both
type I and type II collagens.76,77 The articular surface
layer of the neonatal mandibular condyle has been
found to change from homogeneous distribution of
mechanical properties78 to a gradient distribution of
mechanical properties in the adult mandibular con-
dyle.79 These data suggest that articular cartilage of the
mandibular condyle increases its ability to withstand
mechanical stresses during growth, most likely regu-
lated by cells immediately under the articular sur-
face.76,80 The cells under the articular zone of the
mandibular condyle proliferate and further differentiate
into hypertrophic chondrocytes.76,81,82 Nearly all mi-
totic cells in the condylar cartilage of growing pigs are
located in the prechondroblastic zone.83 Various pro-
teoglycans such as aggrecan, versican, biglycan, and
decorin have been found in condylar cartilage.59,84-87

For instance, versican is located in the articular com-
ponent of the mandibular condyle, instead of growth
cartilage.84,85 Many aspects of subchondral osteogene-
sis, such as bone formation rate and mineral apposition
rate, are not well understood; recent encouraging data
have described several bone histomorphometry param-
eters such as cells per bone surface area and bone
turnover rates in ovarectomized rats.88-90 Quantitative
biological approaches are vitally important to enhance
our understanding of mandibular growth.

Mechanical modulation of chondral growth of the
mandibular condyle

In contrast to recent experimental data on mechan-
ical modulation of chondral growth of the cranial
base,20,21 experiments of mechanical modulation of the
mandibular condyle cartilage have been performed for
decades. Yet, controversy exists regarding to what
extent mechanical stimuli accelerate or retard mandib-
ular growth. In organ culture of the mandibular condyle
explants of 7-day-old mice, simulated articular function
promoted chondral proliferation and differentia-
tion.91,92 When transplanted to nonarticulating environ-
ments such as the cerebral hemisphere, the cartilagi-
nous component of the condyle was replaced by
bone.93-95 These experiments, however, were not de-
signed to demonstrate the precise characteristics of the
mechanical stimuli, eg, constant stress vs intermittent
stress. Constant and intermittent mechanical stresses
have different effects on cell proliferation and matrix
synthesis in mandibular condyle cartilage of 4-day-old
rats in organ culture.96 There remains the possibility
that chondrocytes in the articular portion of condylar
cartilage might respond to mechanical stimuli differ-
ently than chondrocytes in the growth portion of
condylar cartilage.

Available experimental evidence demonstrates that
mandibular condyle cartilage in growing animals accel-
erates growth upon application of mechanical stresses
by increased cell proliferation.82,96-98 Increasing chon-
drocyte mitosis is associated with increasing synthesis
of type II collagen and various types of proteoglycans
in cartilage matrix.85,87,99,100-105 In general, reduced
mechanical stimuli are associated with reduced cell
mitosis and matrix synthesis.106-108 At present, the
amount of growth modulated by mechanical stimuli is
not known, probably as a result of a lack of quantitative
measures of mandibular growth and a lack of knowl-
edge of the precise magnitude and frequency of me-



American Journal of Orthodontics and Dentofacial Orthopedics
Volume 125, Number 6

Mao and Nah 683
chanical stimuli used to modulate mandibular growth.
Without applying quantitative biology methods such
as cell labeling and computerized histomorphome-
try,20-22,83,109 it is impossible to know the amount of
mandibular growth. Without knowledge of the magni-
tudes and frequencies of both the applied forces and the
induced tissue strain, it is difficult to formulate the
amount of mandibular growth as a function of mechan-
ical stimuli. With tools now available to measure the
precise characteristics of mechanical stimuli and to
quantify the amount of biological growth, it is possible
to know how many millinewtons or millipascals of
mechanical stimuli over a given time equate to how
much condylar growth.

Current controversy about clinical effectiveness in
modulating mandibular growth by using mechanical
appliances should not be regarded as evidence that
mandibular growth cannot be regulated effectively by
mechanical stimuli.110 It is probable that effective ways
to communicate with various cell populations of con-
dylar cartilage by many mechanical stimuli remain to
be learned. It is also possible that multiple cell lineages
in the mandibular condyle, eg, fibroblastic, chondro-
genic, and osteoblastic, respond more effectively to
mechanical stimuli that are not commonly experienced
in normal function. Even mature mandibular condylar
cartilage demonstrates anabolic responses to growth
hormones,39,111-114 indicating progenitor cells in the
adult mandibular condyle.

SUTURE GROWTH: HEREDITARY AND
MECHANICAL MODULATIONS

Like growth plates and cranial base synchondroses,
sutures exist primarily to enable longitudinal growth. A
typical craniofacial suture consists of fibroblast-like
cells residing in unmineralized matrices that are sand-
wiched between 2 osteogenesis fronts. The presence of
unmineralized type I collagen fibers between advancing
osteogenic fronts in the suture’s center indicates that
suture mesenchyme consists of fibrogenic cells, in
addition to the likely presence of mesenchymal cells
capable of differentiating into fibrogenic, chondro-
genic, and osteogenic lineages.115-119 The existence of
unmineralized suture mesenchyme is essential for the
continuous growth of the adjacent bones. The fact that
premature suture fusion (synostosis) occurs only in
approximately 1 of every 2500 live human births120

suggests that the differentiation of sutural fibroblastic
and osteoblastic cells and the production of their
respective matrices are delicately balanced by a high
degree of regulation during normal development.121 As
somewhat theatrically articulated by Pruzansky,122 the
suture’s survival is at the mercy of constant competition
between fibroblastic and osteoblastic cells, with the
latter constantly threatening to overpower the
former.123 However, a similar statement can probably
be made about the relationship between growth carti-
lage and subchondral bone.

Genes involved in suture growth

Sutural bone growth is achieved through a series of
cellular activities, including recruitment of mesenchy-
mal cells to the osteogenic cell lineage, stimulation of
committed osteogenic cell proliferation, and differenti-
ation followed by matrix mineralization at the advanc-
ing osteogenic front. Meanwhile, progression of osteo-
genesis needs to be tightly controlled at the advancing
osteogenic front to preserve sutural existence. Apopto-
sis (programmed cell death) might be a critical mech-
anism to control the number of osteoblasts and thus
sutural osteogenesis.124 Much of our knowledge of
regulatory genes involved in sutural growth is acquired
from genetic studies that link gene mutations to inher-
ited skeletal dysplasia.125-129 The list of these genes
includes transcription factors, such as Cbfa1/Runx2,
Msx-2, and Twist, and a recently identified secreted
factor, Nell-1, as well as growth factor/receptors, such
as FGFs, FGFRs, BMPs, and TGF�s.130-143 Cbfa-1/
Runx2 is required for osteoblast commitment and
differentiation, as evidenced by the absence of bone
formation upon targeted disruption of the Cbfa-1/Runx
2 gene in mice144,145 and craniocleidodysostosis syn-
drome caused by a heterozygous null mutation in
humans. Activating (gain of function) mutations of
Msx-2 and FGF/FGFR leads to accelerated bone for-
mation by stimulating cell proliferation and differenti-
ation in the suture and premature sutural ossification
known as craniosynostosis in humans.131,138 By con-
trast, a null (loss of function) mutation of Twist, a
transcription factor negatively regulating the FGFR
gene expression, also causes craniosynostosis in hu-
mans. Although TGF�-3 mutations have not been
linked to craniosynostosis, TGF�-3 has been shown to
play an important role in preventing the cranial suture
from premature ossification or synostosis by promoting
the apoptosis of sutural osteoblasts.135,146,147 NELL-1
overexpression induces accelerated osteoblast differen-
tiation in synostosed suture phenotype.143 Sutural
growth is orchestrated by genes that have been shown
to regulate several cell lineages such as mesenchymal
cells, fibroblast-like cells in suture mesenchyme and
osteoblasts.2 Though similar to the development of
long bones in many aspects,148-150 genetic regulation of
sutural bone growth has some specific features.2 As
demonstrated below, mechanical stresses readily in-
crease anabolic rates of sutural cells and thus are
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expected to modify activities of many of the genes
mentioned above, although only limited information is
available at this time.

Mechanical modulation of suture growth

To test the hypothesis that suture fibrogenesis and
osteogenesis can both be modulated by mechanical
forces in compression and tension, we subjected sepa-
rate groups of young growing rabbits (litter mates)
matched by age and sexto 2-N tensile forces or 5-N
compressive forces against the maxillary incisors for up
to 20 minutes per day over 12 days. Force waveforms
were either static or cyclic (Fig 4). Sham controls
consisted of young growing rabbits (litter mates)
matched by age and sex. Cyclic forces with sinusoidal
waveforms in both tension and compression induced
anabolic suture growth responses.22,28 Suture widths
were quantified by constructing circles and grids over
microscopic sections by means of computerized histo-
morphometric analysis. Significant increases in suture
width were observed on application of either sinusoidal
tensile forces28 or compressive forces22 (Fig 4) over
static forces and natural suture growth. The numbers of
sutural cells, quantified by using standardized grids and
computerized image analysis, were significantly higher
in response to sinusoidal tension28 or compression22

than corresponding static forces and natural growth.
Fluorescence labeling of newly formed sutural bone
shows marked sutural osteogenesis stimulated by cyclic
forces in comparison with static forces and natural
growth.2,22 Thus, there were parallel increases in both
suture width and sutural osteogenesis, suggesting esca-
lated synthesis of extracellular matrices of both fibro-
genic and osteogenic cells. An increasing number of
genes and transcription factors, some of which are
expressed in normal suture development,126-128 are
found to participate in mechanotransduction of sutural
cells. Among these, FGF-2 is upregulated at about 600
mN tensile stresses applied to the rat coronal suture.151

A short dose of mechanical stretch applied to cultured
calvarial osteoblasts upregulates an early response
gene, Egr-1 mRNA.152 Tensile stresses applied to
mouse calvarial sutures induce sustained upregulation
of BMP-4 gene expression, followed by increasing
expression of Cbfa1/Osf-2, an osteoblast-specific tran-
scription factor.153 It is also possible that mechanical
stimuli upregulate genes that are not typically ex-
pressed in normal suture development.

CONVERGING THOUGHTS AND CLINICAL
IMPLICATIONS

The complexity of craniofacial growth and devel-
opment can never be underestimated; it offers tremen-
dous intellectual challenges to those who attempt to
comprehend it. Three cell lineages primarily involved
in craniofacial growth and development—osteogenic,
chondrogenic, and fibrogenic—derive from a common
progenitor of mesenchymal cells. The behavior of all
these cells including commitment, proliferation, apo-
ptosis, differentiation, and matrix synthesis is con-
trolled by genes. Genes can be regulated by environ-
mental cues including myriad types of mechanical
stimuli. Genetics, bioengineering, and quantitative bi-
ology approaches have already revealed considerable
insights into craniofacial growth and development. For
instance, a transgenic mouse model demonstrates that
intramembranous ossification of the parietal bone re-
quires interaction with neural crest-derived meninges,
whereas ossification of the neural crest-derived frontal
bone is autonomous.154 However, neither cells nor
genes alone sufficiently account for the development
and maintenance of pattern.155 In contrast to a quantum
increase in our knowledge of genetic regulation of
craniofacial growth, much less is known about how
environmental cues such as mechanical forces regulate
genes involved in skeletal growth. As much as one
cannot correctly comprehend growth and development
without a thorough understanding of cell condensation,
proliferation, apoptosis, and differentiation, all of
which are controlled by genes, one might face substan-
tial difficulty in understanding growth and development
without thorough knowledge of mechanical modulation
of chondrogenesis and osteogenesis. Although many
skeletal disorders are increasingly well explained by
gene mutations, many others probably result from
aberrant gene-environment interactions.156 The genetic
involvement in other skeletal disorders such as frac-
tures and osteoarthritis and temporomandibular disor-
ders might be a predisposition at most. The missing link
between hereditary regulation of development and clin-
ically observable craniofacial growth most likely in-
cludes mechanical stimulus. The emerging field of
mechanobiology will further enhance our comprehen-
sive understanding of growth and development.1-3

Thus, combined approaches of genetics, bioengineer-
ing, and quantitative biology are often necessary to deal
with the complexity of growth and development.

Previous synthetic accounts of craniofacial growth
and development have used a “ top-down” approach—
examining changes in the length of the mandible over
time and attributing addition or subtraction of length at
different locations to bone formation or resorp-
tion.110,157-160 Although this approach is valid and has
been partially adopted in this review, it is not sufficient
and might benefit from a complementary “bottom-up”
approach to examine how cellular growth contributes to
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addition and subtraction of, for instance, the increase in
mandibular length under the influence of genes and
environmental cues.2,161,162 Growth and development
can only be understood correctly and comprehensively
by a combination of both approaches.
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