
110

Why combine non-mechanical agents with
mechanical loading?

We know physical activity causes relatively larger changes
in bone mass and strength in children than in adults and it
has been only marginally effective for improving bone densi-

ty on older adult skeletons1,2. The decreased effectiveness in
the aging skeleton may be attributed to a reduced sensitivity
of bone tissue to mechanical stimuli3,4. One strategy to over-
come the poor response in the aged skeleton might be to
administer permissive non-mechanical agents5-8 to overcome
that decreased sensitivity and synergistically or additively
increase bone mass and strength.

Numerous non-mechanical agents are necessary for
growth, maintenance and repair of bone mass. Among them
are so-called anabolic agents and so-called anti-resorp-
tive/(re)modeling agents. For example, anabolic agents like
parathyroid hormone (PTH) increase bone mass by adding
bone on all envelopes. It is well established that estrogen
helps to maintain bone mass by depressing bone resorption.
Some selected permissive, non-mechanical agents like
parathyroid hormone (PTH), growth hormone (GH) and
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Abstract

The Utah Paradigm of Skeletal Physiology with its key component, the mechanostat hypothesis, suggest plausible explana-
tions of some of the tissue-level changes occurring from combining selected non-mechanical agents (anabolic and anti-resorp-
tive/(re)modeling agents) with mechanical loading (osteogenic exercise) to increase bone mass and strength. The evidence for
combining selected anabolic agents like parathyroid hormone, prostaglandin E2, growth hormone, etc. with mechanical load-
ing can increase bone mass is strong. Anabolic agents influence loading-related bone formation changes in a permissive man-
ner and modulate (increase) the responsiveness of bone tissue to mechanical loading by changing thresholds for bone forma-
tion and resorption. However, any beneficial effect of combining selected anti-resorptive/(re)modeling agents like estrogen
with loading is marginal, especially in adult skeletons. Postulated changes in modeling and remodeling thresholds (set points)
and known direct effects on bone cells by non-mechanical agents may explain the observed tissue-level changes associated with
large and minor increases in bone mass. Although the pharmaceutical industry has avoided considering osteogenic loading in
the treatment of osteoporosis, a methodical dose-response study of anabolic agents combined with loading should: (1) provide
opportunities for therapeutic intervention to imitate or enhance the osteogenic response to loading in order to correct
osteopenias; (2) provide the potential to diminish the dosage of drugs required to induce bone formation in ways that
enhanced efficacy and reduced any side effects; and (3) improve the quality of life and reduce the risk of falls by improving
balance, gait speed and muscle strength with a non-mechanical agent like GH that could improve both muscle and bone mass
and strength. Lastly, more studies are needed which determine bone strength instead of only "mass" in aged skeletons so one
can assess how effective such treatments would reduce the risk of fracture in the clinic.
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estrogen decline with age in humans and rats. Since age-
related decreases in specific non-mechanical agents may also
cause the decreased sensitivity of bone cells to mechanical
stimuli, this perspective reviews the effects of supplementing
selected non-mechanical agents with mechanical loading in
growing and aged human and rat skeletons. The perspective
determines whether those agents are permissive for skeletal
mechanotransduction and modulate the responsiveness of
bone cells to loading by changing the thresholds for bone
formation and resorption as detailed in the "Utah Paradigm
of Bone Physiology"6,7,9-15 (Figure 1).

Although much was written about the cellular basis of
these selected non-mechanical agents and mechanotrans-
duction responses, and about their signaling pathways,
cytokines and growth factor production, etc., this perspective
will not discuss those matters limiting the discussion to tis-
sue-level responses.

The interaction between non-mechanical agents
and mechanical loading

Historical. The beneficial effects of combining mechani-
cal loading and anabolic agents were first suggested by Lent
Johnson as early as 196516 in a report that sodium fluoride
(NaF) resulted in an early bone-anabolic response in bone
sites under mechanical loading in man. This idea lay dor-
mant until Baylink and colleagues beginning in the '80s
noted in a series of articles that NaF increased bone mass in
high mechanical loading sites in the lower extremities17-20.
They noted in man a lack of 99mTc bisphosphonate uptake in
poorly loaded extremities from NaF administration. In NaF
treated subjects, Riggs et al. also noted decreased bone min-
eral density in the less loaded radial shaft, but measured
BMD in more heavily loaded sites (lumbar spine, femoral
neck and trochanter)21.

The above findings attracted few followers mainly because
NaF was considered a questionable agent that produced
excessive osteoid, possibly due to delayed or defective min-
eralization. Also most bone researchers as well as the phar-

maceutical industry avoided considering mechanical loading
as a regulator of modeling and remodeling-dependent bone
gain activities. Furthermore, the concept of bone cell activi-
ty under endocrine control had become deeply entrenched,
and research utilizing cell, tissue and organ culture systems
free from mechanical loading effects were encouraged and
well funded and that discouraged research in this area22.

The interaction of selected anabolic agents
(PGE2, PTH and GH) and mechanical loading

In a previous article, I reviewed the effects of the interac-
tions of prostaglandin E2 (PGE2), parathyroid hormone
(PTH) and growth hormone (GH) with mechanical load-
ing23. An update follows.

Prostaglandin E2 and loading. Our studies of PGE2 effects
repeatedly revealed a greater osteogenic response in the more
heavily loaded parts of the rat skeleton24-29. The extremities
were most responsive and the long bones of immobilized rats
responded much less than the controls. In dogs, there was heavy
uptake of 99mTc bisphosphonate in the loaded extremities and
poor uptake in the skull region28. Furthermore, Tang et al. in a
dose response study of PGE2 combined with external loading
showed that 1mg PGE2 /kg/d combined with a minimum effec-
tive load by four-point bending of the mid-tibial shaft had a syn-
ergistic effect on periosteal and an additive effect on endocorti-
cal bone formation30. Recently we exercised rats by raising their
cages to enforce a bipedal stance for feeding and drinking. We
found that 1 mg PGE2 /kg/d and raised cages had the same cor-
tical bone effects reported by Tang et al.30, as well as an additive
effect in increasing trabecular bone mass31.

Parathyroid hormone and loading. The literature on the
results of combining PTH with loading supports the benefi-
cial effects of such treatment. Gasser et al. noted the
unloaded vertebral bodies in rats responded poorly to PTH
administration32. In the same vertebrae, Chow et al. found a
synergistic effect of PTH and mechanical loading that
increased bone mass33. More recently, three groups reported
synergistic increases in cortical bone mass with such com-

Bone health and strength
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Figure 1. Frost's simplified scheme of the Utah Paradigm of Skeletal Physiology. The "signals" is the mechanostat, the biologic mecha-
nisms include the adaptive mechanisms involving mainly modeling and remodeling. In a recent conversation with Frost, he considered the
mechanostat to include what is in the parenthesis, the signaling and biologic mechanisms (modified from Frost12).
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bined treatment34-36. In addition, Cann et al. found trabecular
bone density was higher in the regions of lumbar vertebrae
under the highest compressive loading forces in women37.

Growth hormone and loading. The combination of
growth hormone (GH) with mechanical loading added more
support for the beneficial effect of such treatments. This section
will cover GH and the insulin-like growth factor 1 (IGF-1),
because GH levels could alter the cellular microenvironment
by direct action on osteoblasts or indirectly through GH
induction of IGF-138.

The GH literature dates back to 1994, when Yeh et al.
reported that GH potentiated the effect of treadmill exercise
on tibial cortical bone formation39-41. This study resulted in a
synergistic interaction in both cortical surfaces (endosteal and
periosteal). Oxlund et al. also showed that GH and treadmill
exercise markedly enhanced cortical bone formation and
strength in older rats42. Mosekilde et al., using voluntary exer-
cise with GH administration, found an additive effect at all
sites studied (vertebrae, femoral diaphysis, neck and distal
metaphysis)43. The main effect was increased periosteal new
bone formation. More support for the beneficial effect of GH
in enhancing loading responses was found by Halloran et al.

and Forwood et al. who found impaired GH responses of tra-
becular and periosteal and endocortical bone formation dur-
ing skeletal unloading44 in Lewis Dwaft rats8. In comparison,
loaded Dwaft rats GH increased endocortical bone formation
and periosteal woven bone formation.

I could find only one abstract on loading and IGF-1
administration. Gross et al.45 found the combination syner-
gistically enhanced periosteal bone formation by 5-fold. The
bulk of their paper dealt with muscle mass and structure and
did not deal with the interaction between bone mass and
strength. This was unfortunate in that this was an excellent
opportunity to add to our knowledge on the interaction
between bone and muscle (the bone/muscle unit) in the
Utah Paradigm for Bone Physiology11,46,47.

The interaction of a selected anti-resorptive/
(re)modeling agent (Estrogen (E2)) and mechan-
ical loading

Estrogen and loading. A number of studies that explored
whether exercise and estrogen replacement therapy in women
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Figure 2. The Utah Paradigm of Skeletal Physiology suggests a plausible explanation of the beneficial effects of combining an anabolic
agent (PTH or PGE2) with mechanical loading (osteogenic exercise).

Increased mechanical loading (osteogenic exercise): (1) stimulates formation drifts [modeling] (�); and (2) depresses bone resorption
[(re)modeling and resorption drifts] (�); responsiveness as follows: children>>>adults.

Anabolic agents: (3) lower modeling set point (�) to enhance loading-induced modeling-dependent bone gain (�) positive bone bal-

ance; (4) raise remodeling set point ( ) increase disuse-mode BMU remodeling (increase in number of BMU remodeling units),

thus increase remodeling space negative bone balance; and (4) a "direct" stimulation of osteoblastic activity that increases mineral appo-

sition rates of formation drifts ( ) and stimulate BMU units with formation ( ) exceeding resorption (increase in mean wall

thickness) positive bone balance (positive-mode BMU remodeling). It is not known whether loading can result in positive-mode BMU
remodeling.

Net result: There is a synergistic increase in periosteal bone formation (modeling-dependent bone gain) and an additive increase in
endosteal bone formation (remodeling-dependent bone gain) from the combined treatment which coupled with depression of bone remod-
eling from loading results in marked increase in bone mass (Bone ).

Note: = decrease; = increase; mu = mechanical usage or loads; small open arrow = loading effects; large open arrow = direct ana-
bolic agent effect; solid arrowhead = anabolic agent effects.
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have additional or synergistic responses suggested that the
effects of estrogen and loading are additive48-51. There is no
evidence that there is any synergism between them52.

It has been established that estrogen maintains bone mass
through depression of bone resorption. Whether estrogen
facilitates the bone anabolic response to increased mechani-
cal loading is unclear49,53-65. In contrast, Turner et al. indicat-
ed it reduces periosteal bone formation in rapidly growing
rats65,66, followed by several reports that estrogen dampens
periosteal modeling response to loading in older female rat
skeletons67-69. It is common knowledge that ovariectomy
leads to increased bone formation in all envelopes, which
could suggest estrogen decreased bone formation. Wronski
et al. concluded estrogen replacement reduced absolute
bone formation but enhanced net bone formation70,71.

The above findings could suggest that estrogen adminis-
tration suppressed and ovariectomy enhanced mechanically-
induced osteogenesis63. There is no direct evidence that
estrogen enhances the responses of bone cells to loading.
The available evidence suggests estrogen has no or a depres-
sive effect on the adaptive response to loading by individual
cells. This led Lanyon and Skerry to hypothesize that it is not
estrogen that is necessary for a competent adaptive response
to load bearing but the estrogen receptor52,72-74.

The relationship to the Utah Paradigm of Skeletal
Physiology and the effect of combined non-mechan-
ical agents and loading — the tissue level responses

The Utah Paradigm of Skeletal Physiology suggests one
possible explanation of the beneficial effects of combining an
anabolic agent (PTH or PGE2, etc.) with mechanical loading
(osteogenic exercise; Figure 2). It is well established that
increasing mechanical strain from osteogenic loading alone
will turn on modeling-dependent bone gain and depresses
re(modeling)-dependent bone loss resulting in a modest
increase in bone gain and strength76-84. On the other hand,
anabolic agents have been postulated to influence loading-
related bone formation in a permissive manner and modulate
the responsiveness of bone tissue to mechanical loading by
lowering the modeling6,8,12,30,85 and raising the remodeling set
points. Lowering the modeling set point will turn on model-
ing-dependent bone gain while raising the remodeling set
point will turn on (re)modeling-dependent bone loss. In addi-
tion, there are known direct effects of anabolic agents stimu-
lating osteogenic cells and in such a manner as to stimulate
the bone formation phase of remodeling resulting in BMU
remodeling-dependent bone gain and enhance formation
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Figure 3. The Utah Paradigm of Skeletal Physiology suggests a plausible explanation of the beneficial effects of combining an anti-
resorptive/(re)modeling agent with mechanical loading (osteogenic exercise).

Increased mechanical loading (osteogenic exercise): (1) stimulates formation drifts [modeling] (�); and (2) depresses bone resorption (�)
[responsiveness as follows: children>>>adults].
Anti-resorption/(re)modeling agents (estrogen): (3) raise modeling set point (�) to enhance loading-induced modeling-dependent bone
gain (�) slight positive bone balance; (4) estrogen lowers the remodeling set point to depress bone resorption reduction in resorp-
tion drift ( ) and remodeling space ( ) slight positive bone balance and blunt the loading-induced formation drift.
Net result: Increased bone mass due to reduction in modeling and remodeling space, but estrogen partially abrogates loading-induced bone
formation resulting in marginal increase in bone mass in the adult skeleton.  More increases in children because they are more responsive
to loading-induced bone formation.

Note: = decrease; = increase; mu = mechanical usage or loads; small open arrow = loading effects; large open arrow = direct
estrogen effect; solid arrowhead = estrogen effect.
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drifts28,29,75-78. The net effects of combining an anabolic agent
with mechanical loading are synergistic increases in model-
ing-dependent bone gain (increased periosteal bone gain),
additive increase in endosteal bone gain and decrease
remodeling and resorption drift. The multiple actions of ana-
bolic agents and mechanical loading stimulate bone forma-
tion along with the mechanical loading-induced depression of
bone resorption resulting in a favorable positive bone balance
and thus a marked increased in bone mass and strength. The
above responses suggest that not only the mechanostat
thresholds or set point changes are needed, but the direct
anabolic effects of anabolic agents need to be factored in to
explain the observed findings (Figure 2)29.

Let us also employ the Utah Paradigm of Skeletal
Physiology to explain the observed modest gain in bone mass
and strength with combining estrogen with mechanical load-
ing (Figure 3). As mentioned earlier, mechanical loading
alone may enhance modeling-dependent bone gain and
depressed (re)modeling-dependent bone loss resulting in a
modest positive bone balance76-78. Anti-resorptive/(re)mod-
eling agents like estrogen have been postulated to lower the
bone remodeling set point to depress bone resorption; which
reduces resorption drifts and remodeling spaces, resulting in
a slight positive bone gain. In addition, estrogen has been
shown to inhibit periosteal bone formation (modeling-
dependent bone gain) in rat long bones65 contributing to a
slight negative bone balance. Nevertheless, these multiple
actions favor a modest positive bone balance that could
increase bone mass and strength (Figure 3).

Discussion

One must remember that the chief mechanical function of
bones lies in providing enough strength to meet the volun-
tary mechanical demands on them so as not to fracture9-13.
Although the evidence for combining selected anabolic
agents with mechanical loading to increase localized bone
mass in preclinical studies is strong, there is a need for more
studies which determine bone strength in order that one can
assess how effective such treatments could be in reducing the
risk of fracture. Unfortunately only two pre-clinical articles
on the effects of combining non-mechanical agents and
mechanical loading directly measured bone strength42,43. The
rest of the articles reported bone mineral density and bone
mass values. The bulk of the pre-clinical studies determined
regional bone mass in growing bones by histomorphometry
of cancellous and cortical bones. Histomorphometric analy-
sis of diaphyseal cortical bone can provide bone distribution
data that allows calculation of bone strength, but such data
are missing. Furthermore, regional distribution or redistrib-
ution of diaphyseal compact bone mass can significantly
change the cross-sectional moment of interia (CSMI) with
large impact on bone strength with or without change in
mass balance25,28-30,34,77,80-82,86-92. Thus, it is imperative future
pre-clinical studies must determine bone strength not only in
growing but in adult skeletal sites.

The clinical studies reported here lack reliable bone mass
and strength data. They employed bone mineral density
(BMD) as an indicator of bone "health". Bone mineral den-
sity values are unreliable indicators of both whole-bone
strength and bone mass. Future studies must depend on
peripheral quantitative tomography (pQCT) in vivo derived
bone strength indices (BSI) as indicators of whole bone
strength94-101.

More dose response studies with different anabolic agents
and various mild exercises are needed to investigate the ther-
apeutic window for beneficial responses in aged skeletons.
Inappropriate exercise such as jumping exercises with a
weighted vest were injurious in recruits in whom extensive
physical exercise led to large increases in BMD, but 41% of
the recruits had stress fractures93. Since mild exercise, like
walking, alone in older individuals may not increase bone
mass, combining it with an anti-resorptive/(re)modeling
agent may not be very effective. However systematic studies
with anabolic agents and exercise would: (1) provide oppor-
tunities for therapeutic intervention to imitate or enhance the
osteogenic response to loading for the reversal of osteopenia;
(2) provide potential to diminish the dosage of drugs
required to induce bone formation which leads to enhanced
efficacy and reduced side effects; and (3) improve the quality
of life and the risk of falls by improving balance, gait speed
and muscle strength with a non-mechanical agent like GH
that improves both muscle and bone mass and strength.

More studies are needed which determine or calculate
bone strength in aged skeletons so one can assess how effec-
tive the combined treatment would reduce the risks of frac-
ture in the clinic.
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